MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Fractal Uncertainty for Transfer Operators

Author(s)
Dyatlov, Semen; Zworski, Maciej
Thumbnail
DownloadAccepted version (467.3Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We show directly that the fractal uncertainty principle of Bourgain–Dyatlov [3] implies that there exists σ > 0 for which the Selberg zeta function (1.2) for a convex co-compact hyperbolic surface has only finitely many zeros with Re s≥1/2−σ⁠. That eliminates advanced microlocal techniques of Dyatlov–Zahl [6], though we stress that these techniques are still needed for resolvent bounds and for possible generalizations to the case of nonconstant curvature.
Date issued
2018-03
URI
https://hdl.handle.net/1721.1/122945
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
International Mathematics Research Notices
Publisher
Oxford University Press (OUP)
Citation
Dyatlov, Semen & Maciej Zworski. "Fractal Uncertainty for Transfer Operators." International Mathematics Research Notices (March 2018): rny026 © 2018 The Authors
Version: Author's final manuscript
ISSN
1073-7928
1687-0247
Keywords
General Mathematics

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.