| dc.contributor.author | Dyatlov, Semen | |
| dc.contributor.author | Zworski, Maciej | |
| dc.date.accessioned | 2019-11-14T21:07:18Z | |
| dc.date.available | 2019-11-14T21:07:18Z | |
| dc.date.issued | 2018-03 | |
| dc.date.submitted | 2017-11 | |
| dc.identifier.issn | 1073-7928 | |
| dc.identifier.issn | 1687-0247 | |
| dc.identifier.uri | https://hdl.handle.net/1721.1/122945 | |
| dc.description.abstract | We show directly that the fractal uncertainty principle of Bourgain–Dyatlov [3] implies that there exists σ > 0 for which the Selberg zeta function (1.2) for a convex co-compact hyperbolic surface has only finitely many zeros with Re s≥1/2−σ. That eliminates advanced microlocal techniques of Dyatlov–Zahl [6], though we stress that these techniques are still needed for resolvent bounds and for possible generalizations to the case of nonconstant curvature. | en_US |
| dc.language.iso | en | |
| dc.publisher | Oxford University Press (OUP) | en_US |
| dc.relation.isversionof | http://dx.doi.org/10.1093/imrn/rny026 | en_US |
| dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
| dc.source | other univ website | en_US |
| dc.subject | General Mathematics | en_US |
| dc.title | Fractal Uncertainty for Transfer Operators | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Dyatlov, Semen & Maciej Zworski. "Fractal Uncertainty for Transfer Operators." International Mathematics Research Notices (March 2018): rny026 © 2018 The Authors | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
| dc.relation.journal | International Mathematics Research Notices | en_US |
| dc.eprint.version | Author's final manuscript | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dc.date.updated | 2019-11-12T16:12:21Z | |
| dspace.date.submission | 2019-11-12T16:12:26Z | |