Show simple item record

dc.contributor.authorDyatlov, Semen
dc.contributor.authorZworski, Maciej
dc.date.accessioned2019-11-14T21:07:18Z
dc.date.available2019-11-14T21:07:18Z
dc.date.issued2018-03
dc.date.submitted2017-11
dc.identifier.issn1073-7928
dc.identifier.issn1687-0247
dc.identifier.urihttps://hdl.handle.net/1721.1/122945
dc.description.abstractWe show directly that the fractal uncertainty principle of Bourgain–Dyatlov [3] implies that there exists σ > 0 for which the Selberg zeta function (1.2) for a convex co-compact hyperbolic surface has only finitely many zeros with Re s≥1/2−σ⁠. That eliminates advanced microlocal techniques of Dyatlov–Zahl [6], though we stress that these techniques are still needed for resolvent bounds and for possible generalizations to the case of nonconstant curvature.en_US
dc.language.isoen
dc.publisherOxford University Press (OUP)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1093/imrn/rny026en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceother univ websiteen_US
dc.subjectGeneral Mathematicsen_US
dc.titleFractal Uncertainty for Transfer Operatorsen_US
dc.typeArticleen_US
dc.identifier.citationDyatlov, Semen & Maciej Zworski. "Fractal Uncertainty for Transfer Operators." International Mathematics Research Notices (March 2018): rny026 © 2018 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalInternational Mathematics Research Noticesen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-11-12T16:12:21Z
dspace.date.submission2019-11-12T16:12:26Z


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record