MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Virus‐Templated Nickel Phosphide Nanofoams as Additive‐Free, Thin‐Film Li‐Ion Microbattery Anodes

Author(s)
Records, William Christopher; Wei, Shuya; Belcher, Angela M
Thumbnail
DownloadAccepted version (1.596Mb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Transition metal phosphides are a new class of materials generating interest as alternative negative electrodes in lithium-ion batteries. However, metal phosphide syntheses remain underdeveloped in terms of simultaneous control over phase composition and 3D nanostructure. Herein, M13 bacteriophage is employed as a biological scaffold to develop 3D nickel phosphide nanofoams with control over a range of phase compositions and structural elements. Virus-templated Ni5P4 nanofoams are then integrated as thin-film negative electrodes in lithium-ion microbatteries, demonstrating a discharge capacity of 677 mAh g⁻¹ (677 mAh cm⁻³) and an 80% capacity retention over more than 100 cycles. This strong electrochemical performance is attributed to the virus-templated, nanostructured morphology, which remains electronically conductive throughout cycling, thereby sidestepping the need for conductive additives. When accounting for the mass of additional binder materials, virus-templated Ni₅P₄ nanofoams demonstrate the highest practical capacity reported thus far for Ni₅P₄ electrodes. Looking forward, this synthesis method is generalizable and can enable precise control over the 3D nanostructure and phase composition in other metal phosphides, such as cobalt and copper. Keywords: 3D nanostructure; transition metal phosphide; biotemplating; M13 bacteriophage; Li-ion microbattery
Date issued
2019-09
URI
https://hdl.handle.net/1721.1/123308
Department
Massachusetts Institute of Technology. Department of Chemical Engineering; MIT Materials Research Laboratory; Massachusetts Institute of Technology. Department of Biological Engineering; Koch Institute for Integrative Cancer Research at MIT
Journal
Small
Publisher
Wiley
Citation
Records, William C. et al. "Virus‐Templated Nickel Phosphide Nanofoams as Additive‐Free, Thin‐Film Li‐Ion Microbattery Anodes." Small 15, 44 (September 2019): 1903166 © 2019 Wiley
Version: Author's final manuscript
ISSN
1613-6810
1613-6829

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.