Show simple item record

dc.contributor.authorRecords, William Christopher
dc.contributor.authorWei, Shuya
dc.contributor.authorBelcher, Angela M
dc.date.accessioned2019-12-19T18:30:40Z
dc.date.available2019-12-19T18:30:40Z
dc.date.issued2019-09
dc.date.submitted2019-07
dc.identifier.issn1613-6810
dc.identifier.issn1613-6829
dc.identifier.urihttps://hdl.handle.net/1721.1/123308
dc.description.abstractTransition metal phosphides are a new class of materials generating interest as alternative negative electrodes in lithium-ion batteries. However, metal phosphide syntheses remain underdeveloped in terms of simultaneous control over phase composition and 3D nanostructure. Herein, M13 bacteriophage is employed as a biological scaffold to develop 3D nickel phosphide nanofoams with control over a range of phase compositions and structural elements. Virus-templated Ni5P4 nanofoams are then integrated as thin-film negative electrodes in lithium-ion microbatteries, demonstrating a discharge capacity of 677 mAh g⁻¹ (677 mAh cm⁻³) and an 80% capacity retention over more than 100 cycles. This strong electrochemical performance is attributed to the virus-templated, nanostructured morphology, which remains electronically conductive throughout cycling, thereby sidestepping the need for conductive additives. When accounting for the mass of additional binder materials, virus-templated Ni₅P₄ nanofoams demonstrate the highest practical capacity reported thus far for Ni₅P₄ electrodes. Looking forward, this synthesis method is generalizable and can enable precise control over the 3D nanostructure and phase composition in other metal phosphides, such as cobalt and copper. Keywords: 3D nanostructure; transition metal phosphide; biotemplating; M13 bacteriophage; Li-ion microbatteryen_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (Grant HR0011835402)en_US
dc.description.sponsorshipNational Science Foundation (Grant DMR‐1419807)en_US
dc.description.sponsorshipShell International Exploration and Production B.V. (Grant 4550155123)en_US
dc.language.isoen
dc.publisherWileyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/smll.201903166en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceWilliam Recordsen_US
dc.titleVirus‐Templated Nickel Phosphide Nanofoams as Additive‐Free, Thin‐Film Li‐Ion Microbattery Anodesen_US
dc.typeArticleen_US
dc.identifier.citationRecords, William C. et al. "Virus‐Templated Nickel Phosphide Nanofoams as Additive‐Free, Thin‐Film Li‐Ion Microbattery Anodes." Small 15, 44 (September 2019): 1903166 © 2019 Wileyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.contributor.departmentMIT Materials Research Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MITen_US
dc.relation.journalSmallen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-12-13T14:20:07Z
dspace.date.submission2019-12-13T14:20:09Z
mit.journal.volume15en_US
mit.journal.issue44en_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record