Show simple item record

dc.contributor.authorLiu, Katherine
dc.contributor.authorOk, Kyel
dc.contributor.authorVega-Brown, William R
dc.contributor.authorRoy, Nicholas
dc.date.accessioned2020-01-24T15:21:14Z
dc.date.available2020-01-24T15:21:14Z
dc.date.issued2018-09-13
dc.date.submitted2018-05
dc.identifier.isbn9781538630815
dc.identifier.isbn9781538630808
dc.identifier.isbn9781538630822
dc.identifier.issn2577-087X
dc.identifier.urihttps://hdl.handle.net/1721.1/123673
dc.description.abstractWe present a novel method of measurement covariance estimation that models measurement uncertainty as a function of the measurement itself. Existing work in predictive sensor modeling outperforms conventional fixed models, but requires domain knowledge of the sensors that heavily influences the accuracy and the computational cost of the models. In this work, we introduce Deep Inference for Covariance Estimation (DICE), which utilizes a deep neural network to predict the covariance of a sensor measurement from raw sensor data. We show that given pairs of raw sensor measurement and ground-truth measurement error, we can learn a representation of the measurement model via supervised regression on the prediction performance of the model, eliminating the need for hand-coded features and parametric forms. Our approach is sensor-agnostic, and we demonstrate improved covariance prediction on both simulated and real data. Keywords: robot sensing systems; measurement uncertainty; measurement errors; covariance matrices; predictive models; estimation; neural networksen_US
dc.description.sponsorshipUnited States. National Aeronautics and Space Administration (Award NNX15AQ50A)en_US
dc.description.sponsorshipUnited States. Defense Advanced Research Projects Agency (Contract HR0011-15-C-0110)en_US
dc.publisherIEEEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/icra.2018.8461047en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceKatherine Liuen_US
dc.titleDeep Inference for Covariance Estimation: Learning Gaussian Noise Models for State Estimationen_US
dc.typeArticleen_US
dc.identifier.citationLiu, Katherine et al. "Deep Inference for Covariance Estimation: Learning Gaussian Noise Models for State Estimation." 2018 IEEE International Conference on Robotics and Automation (ICRA), May 21-25, 2018, Brisbane, Queensland, Australia, IEEE, 2018en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journal2018 IEEE International Conference on Robotics and Automation (ICRA)en_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.date.submission2020-01-10T15:22:21Z
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record