Show simple item record

dc.contributor.authorDemaine, Erik D
dc.contributor.authorMa, Fermi
dc.contributor.authorSchvartzman, Ariel
dc.contributor.authorWaingarten, Erik
dc.contributor.authorAaronson, Scott
dc.date.accessioned2020-11-10T16:07:37Z
dc.date.available2020-11-10T16:07:37Z
dc.date.issued2018-11
dc.date.submitted2017-10
dc.identifier.issn0304-3975
dc.identifier.urihttps://hdl.handle.net/1721.1/123865
dc.description.abstractWhen analyzing the computational complexity of well-known puzzles, most papers consider the algorithmic challenge of solving a given instance of (a generalized form of) the puzzle. We take a different approach by analyzing the computational complexity of designing a “good” puzzle. We assume a puzzle maker designs part of an instance, but before publishing it, wants to ensure that the puzzle has a unique solution. Given a puzzle, we introduce the FCP (fewest clues problem) version of the problem: Given an instance to a puzzle, what is the minimum number of clues we must add in order to make the instance uniquely solvable?We analyze this question for the Nikoli puzzles Sudoku, Shakashaka, and Akari. Solving these puzzles is NP-complete, and we show their FCP versions are Σ2P-complete. Along the way, we show that the FCP versions of TRIANGLE PARTITION, PLANAR 1-IN-3 SAT, and LATIN SQUARE are all Σ2P-complete. We show that even problems in P have difficult FCP versions, sometimes even Σ2P-complete, though “closed under cluing” problems are in the (presumably) smaller class NP; for example, FCP 2SAT is NP-complete.en_US
dc.description.sponsorshipNSF (Grant DGE-16-44869)en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.tcs.2018.01.020en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleThe fewest clues problemen_US
dc.typeArticleen_US
dc.identifier.citationDemaine, Erik D. et al. "The fewest clues problem." Theoretical Computer Science 748 (November 2018): 28-39 © 2018 Elsevier B.V.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalTheoretical Computer Scienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-06-12T12:15:44Z
dspace.date.submission2019-06-12T12:15:48Z
mit.journal.volume748en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record