Show simple item record

dc.contributor.authorSingh, Neetesh Kumar
dc.contributor.authorXin, Ming
dc.contributor.authorVermeulen, Diedrik Rene Georgette
dc.contributor.authorShtyrkova, Katia
dc.contributor.authorLi, Nanxi
dc.contributor.authorCallahan, Patrick T
dc.contributor.authorMagden, Emir Salih
dc.contributor.authorRuocco, Alfonso
dc.contributor.authorFahrenkopf, Nicholas
dc.contributor.authorBaiocco, Christopher
dc.contributor.authorKuo, Bill P-P
dc.contributor.authorRadic, Stojan
dc.contributor.authorIppen, Erich Peter
dc.contributor.authorKartner, Franz X.
dc.contributor.authorWatts, Michael
dc.date.accessioned2020-03-25T12:44:51Z
dc.date.available2020-03-25T12:44:51Z
dc.date.issued2017-09
dc.date.submitted2017-08
dc.identifier.issn2047-7538
dc.identifier.urihttps://hdl.handle.net/1721.1/124310
dc.description.abstractEfficient complementary metal-oxide semiconductor-based nonlinear optical devices in the near-infrared are in strong demand. Due to two-photon absorption in silicon, however, much nonlinear research is shifting towards unconventional photonics platforms. In this work, we demonstrate the generation of an octave-spanning coherent supercontinuum in a silicon waveguide covering the spectral region from the near- to shortwave-infrared. With input pulses of 18 pJ in energy, the generated signal spans the wavelength range from the edge of the silicon transmission window, approximately 1.06 to beyond 2.4 μm, with a −20 dB bandwidth covering 1.124–2.4 μm. An octave-spanning supercontinuum was also observed at the energy levels as low as 4 pJ (−35 dB bandwidth). We also measured the coherence over an octave, obtaining [InlineEquation not available: see fulltext.], in good agreement with the simulations. In addition, we demonstrate optimization of the third-order dispersion of the waveguide to strengthen the dispersive wave and discuss the advantage of having a soliton at the long wavelength edge of an octave-spanning signal for nonlinear applications. This research paves the way for applications, such as chip-scale precision spectroscopy, optical coherence tomography, optical frequency metrology, frequency synthesis and wide-band wavelength division multiplexing in the telecom window.en_US
dc.description.sponsorshipDefense Advanced Research Projects Agency (DARPA) (contract HR0011-15-C-0056)en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/lsa.2017.131en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleOctave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μmen_US
dc.typeArticleen_US
dc.identifier.citationSingh, Neetesh, et al. "Octave-spanning coherent supercontinuum generation in silicon on insulator from 1.06 μm to beyond 2.4 μm." Light: Science & Applications 7 (September 2017): 17131 © 2018, The Author(s).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronicsen_US
dc.relation.journalLight: Science and Applicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-02-28T19:07:42Z
dspace.date.submission2020-02-28T19:07:45Z
mit.journal.volume7en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record