MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Four revolutions in physics and the second quantum revolution — A unification of force and matter by quantum information

Author(s)
Wen, Xiao-Gang
Thumbnail
DownloadSubmitted version (2.003Mb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Newton's mechanical revolution unifies the motion of planets in the sky and the falling of apples on Earth. Maxwell's electromagnetic revolution unifies electricity, magnetism, and light. Einstein's relativistic revolution unifies space with time, and gravity with space-time distortion. The quantum revolution unifies particle with waves, and energy with frequency. Each of those revolution changes our world view. In this article, we will describe a revolution that is happening now: the second quantum revolution which unifies matter/space with information. In other words, the new world view suggests that elementary particles (the bosonic force particles and fermionic matter particles) all originated from quantum information (qubits): they are collective excitations of an entangled qubit ocean that corresponds to our space. The beautiful geometric Yang-Mills gauge theory and the strange Fermi statistics of matter particles now have a common algebraic quantum informational origin.
Date issued
2018-09
URI
https://hdl.handle.net/1721.1/124370
Department
Massachusetts Institute of Technology. Department of Physics
Journal
International Journal of Modern Physics B
Publisher
World Scientific Pub Co Pte Lt
Citation
Wen, Xiao-Gang. "Four revolutions in physics and the second quantum revolution — A unification of force and matter by quantum information." International Journal of Modern Physics B 32, 26 (2018): 1830010. © 2018 World Scientific Publishing Company.
Version: Original manuscript
ISSN
0217-9792
1793-6578
Keywords
Statistical and Nonlinear Physics, Condensed Matter Physics

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.