MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Degradation Issues in Solid Oxide Cells During High Temperature Electrolysis

Author(s)
Sohal, M. S.; O'Brien, J. E.; Stoots, C. M.; Sharma, V. I.; Yildiz, B.; Virkar, A.; Yildiz; ... Show more Show less
Thumbnail
DownloadPublished version (3.090Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Idaho National Laboratory (INL) is performing high-temperature electrolysis research to generate hydrogen using solid oxide electrolysis cells (SOECs). The project goals are to address the technical and degradation issues associated with the SOECs. This paper provides a summary of various ongoing INL and INL sponsored activities aimed at addressing SOEC degradation. These activities include stack testing, post-test examination, degradation modeling, and a list of issues that need to be addressed in future. Major degradation issues relating to solid oxide fuel cells (SOFC) are relatively better understood than those for SOECs. Some of the degradation mechanisms in SOFCs include contact problems between adjacent cell components, microstructural deterioration (coarsening) of the porous electrodes, and blocking of the reaction sites within the electrodes. Contact problems include delamination of an electrode from the electrolyte, growth of a poorly (electronically) conducting oxide layer between the metallic interconnect plates and the electrodes, and lack of contact between the interconnect and the electrode. INL's test results on high temperature electrolysis (HTE) using solid oxide cells do not provide clear evidence of whether different events lead to similar or drastically different electrochemical degradation mechanisms. Post-test examination of the solid oxide electrolysis cells showed that the hydrogen electrode and interconnect get partially oxidized and become nonconductive. This is most likely caused by the hydrogen stream composition and flow rate during cool down. The oxygen electrode side of the stacks seemed to be responsible for the observed degradation due to large areas of electrode delamination. Based on the oxygen electrode appearance, the degradation of these stacks was largely controlled by the oxygen electrode delamination rate. Virkar and co-workers have developed a SOEC model based on concepts in local thermodynamic equilibrium in systems otherwise in global thermodynamic nonequilibrium. This model is under continued development. It shows that electronic conduction through the electrolyte, however small, must be taken into account for determining local oxygen chemical potential, within the electrolyte. The chemical potential within the electrolyte may lie out of bounds in relation to values at the electrodes in the electrolyzer mode. Under certain conditions, high pressures can develop in the electrolyte just under the oxygen electrode (anode)/electrolyte interface, leading to electrode delamination. This theory is being further refined and tested by introducing some electronic conduction in the electrolyte. © 2012 American Society of Mechanical Engineers.
Date issued
2011-12
URI
https://hdl.handle.net/1721.1/124500
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Department of Nuclear Science and Engineering
Journal
Journal of Fuel Cell Science and Technology
Publisher
ASME International
Citation
Sohal, M. S. et al. "Degradation Issues in Solid Oxide Cells During High Temperature Electrolysis." Journal of Fuel Cell Science and Technology 9-1 (February 2012): 011017 © Author(s)
Version: Final published version
ISSN
1550-624X
2381-6910
2381-6872
1551-6989

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.