Show simple item record

dc.contributor.authorLopez, Brett T.
dc.contributor.authorSlotine, Jean-Jacques E
dc.contributor.authorHow, Jonathan P.
dc.date.accessioned2020-04-14T14:56:47Z
dc.date.available2020-04-14T14:56:47Z
dc.date.issued2018-09
dc.identifier.isbn9781538630815
dc.identifier.isbn978-1-5386-3080-8
dc.identifier.isbn978-1-5386-3082-2
dc.identifier.issn2577-087X
dc.identifier.urihttps://hdl.handle.net/1721.1/124620
dc.description.abstractRecent advances in perception and planning algorithms have enabled robots to navigate autonomously through unknown, cluttered environments at high-speeds. A key component of these systems is the ability to identify, select, and execute a safe trajectory around obstacles. Many of these systems, however, lack performance guarantees because model uncertainty and external disturbances are ignored when a trajectory is selected for execution. This work leverages results from nonlinear control theory to establish a bound on tracking performance that can be used to select a provably safe trajectory. The Composite Adaptive Sliding Controller (CASC) provides robustness to disturbances and reduces model uncertainty through high-rate parameter estimation. CASC is demonstrated in simulation and hardware to significantly improve the performance of a quadrotor navigating through unknown environments with external disturbances and unknown model parameters. Keywords: Trajectory; Electron tubes; Uncertainty; Robustness; Optimization; Adaptation modelsen_US
dc.description.sponsorshipNational Science Foundation Graduate Research Fellowship (Grant No. 1122374)en_US
dc.description.sponsorshipDARPA Fast Lightweight Autonomy (FLA) Program.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/icra.2018.8460817en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther repositoryen_US
dc.titleRobust Collision Avoidance via Sliding Controlen_US
dc.typeArticleen_US
dc.identifier.citationLopez, Brett T., Slotine, Jean-Jacques and How, Jonathan P. "Robust Collision Avoidance via Sliding Control." 2018 IEEE International Conference on Robotics and Automation, 21-25 May 2018, Brisbane, QLD, Australia, edited by Kevin Lynch et al. Institute of Electrical and Electronics Engineers (IEEE), 2018en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Aerospace Controls Laboratoryen_US
dc.relation.journal2018 IEEE International Conference on Robotics and Automationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2019-10-28T16:20:17Z
dspace.date.submission2019-10-28T16:20:24Z
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record