MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Repeated evolution of cytochrome P450-mediated spiroketal steroid biosynthesis in plants

Author(s)
Christ, Bastien; Xu, Chengchao; Xu, Menglong; Li, Fu-Shuang; Mitchell, Andrew J.; Weng, Jing-Ke; ... Show more Show less
Thumbnail
DownloadPublished version (1.258Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Diosgenin is a spiroketal steroidal natural product extracted from plants and used as the single most important precursor for the world steroid hormone industry. The sporadic occurrences of diosgenin in distantly related plants imply possible independent biosynthetic origins. The characteristic 5,6-spiroketal moiety in diosgenin is reminiscent of the spiroketal moiety present in anthelmintic avermectins isolated from actinomycete bacteria. How plants gained the ability to biosynthesize spiroketal natural products is unknown. Here, we report the diosgenin-biosynthetic pathways in himalayan paris (Paris polyphylla), a monocot medicinal plant with hemostatic and antibacterial properties, and fenugreek (Trigonella foenum–graecum), an eudicot culinary herb plant commonly used as a galactagogue. Both plants have independently recruited pairs of cytochromes P450 that catalyze oxidative 5,6-spiroketalization of cholesterol to produce diosgenin, with evolutionary progenitors traced to conserved phytohormone metabolism. This study paves the way for engineering the production of diosgenin and derived analogs in heterologous hosts.
Date issued
2019-07-19
URI
https://hdl.handle.net/1721.1/124710
Department
Whitehead Institute for Biomedical Research; Massachusetts Institute of Technology. Department of Biology
Journal
Nature communications
Publisher
Springer Science and Business Media LLC
Citation
Christ, Bastien et al. "Repeated evolution of cytochrome P450-mediated spiroketal steroid biosynthesis in plants." Nature communications 10 (2019): 1038 © 2019 The Author(s)
Version: Final published version
ISSN
2041-1723
Keywords
General Biochemistry, Genetics and Molecular Biology, General Physics and Astronomy, General Chemistry

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.