MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Triforce and corners

Author(s)
Sah, Ashwin; Sawhney, Mehtaab
Thumbnail
Download1903.04863.pdf (259.1Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
May the triforce be the 3-uniform hypergraph on six vertices with edges {123′, 12′3, 1′23}. We show that the minimum triforce density in a 3-uniform hypergraph of edge density δ is δ 4−o(1) but not O(δ 4 ). Let M(δ) be the maximum number such that the following holds: for every ǫ > 0 and G = F n 2 with n sufficiently large, if A ⊆ G × G with A ≥ δ|G| 2 , then there exists a nonzero “popular difference” d ∈ G such that the number of “corners” (x, y),(x + d, y),(x, y + d) ∈ A is at least (M(δ) − ǫ)|G| 2 . As a corollary via a recent result of Mandache, we conclude that M(δ) = δ 4−o(1) and M(δ) = ω(δ 4 ). On the other hand, for 0 < δ < 1/2 and sufficiently large N, there exists A ⊆ [N] 3 with |A| ≥ δN3 such that for every d 6= 0, the number of corners (x, y, z),(x + d, y, z),(x, y + d, z),(x, y, z + d) ∈ A is at most δ c log(1/δ)N 3 . A similar bound holds in higher dimensions, or for any configuration with at least 5 points or affine dimension at least 3. ©2019
Date issued
2019-07-12
URI
https://hdl.handle.net/1721.1/124864
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Mathematical proceedings of the Cambridge Philosophical Society
Publisher
Cambridge University Press (CUP)
Citation
Fox, Jacob, Ashwin Sah, Mehtaab Sawhney, David Stoner, and Yufei Zhao, "Triforce and corners." Mathematical proceedings of the Cambridge Philosophical Society 2019 (July 2019): p. 1-15 doi 10.1017/s0305004119000173 ©2019 Author(s)
Version: Author's final manuscript
ISSN
0305-0041
1469-8064
Keywords
General Mathematics

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.