dc.contributor.author | Lusztig, George | |
dc.date.accessioned | 2020-04-28T17:48:27Z | |
dc.date.available | 2020-04-28T17:48:27Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 2304-7917 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/124900 | |
dc.description.abstract | Let G be a reductive, connected algebraic group over an algebraic closure of a finite field. We define a tensor structure on the category of perverse sheaves on G which are direct sums of unipotent character sheaves in a fixed two-sided cell; we show that this is equivalent to the centre with a known monoidal abelian category (a categorification of the J-ring associated to the same two-sided cell). ©2015 | en_US |
dc.relation.isversionof | https://web.math.sinica.edu.tw/bulletin_ns/20151/2015101.pdf | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Truncated convolution of character sheaves | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Lusztig, G., "Truncated convolution of character sheaves." Bulletin of the Institute of Mathematics, Academia sinica 10, 1 (2015): p. 1-57 url https://web.math.sinica.edu.tw/bulletin_ns/20151/2015101.pdf ©2015 Author(s) | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | en_US |
dc.relation.journal | Bulletin of the Institute of Mathematics, Academia sinica | en_US |
dc.eprint.version | Original manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dspace.date.submission | 2020-03-31T17:18:31Z | |
mit.journal.volume | 10 | en_US |
mit.journal.issue | 1 | en_US |
mit.license | OPEN_ACCESS_POLICY | |
mit.metadata.status | Complete | |