Show simple item record

dc.contributor.authorLusztig, George
dc.date.accessioned2020-04-28T17:48:27Z
dc.date.available2020-04-28T17:48:27Z
dc.date.issued2015
dc.identifier.issn2304-7917
dc.identifier.urihttps://hdl.handle.net/1721.1/124900
dc.description.abstractLet G be a reductive, connected algebraic group over an algebraic closure of a finite field. We define a tensor structure on the category of perverse sheaves on G which are direct sums of unipotent character sheaves in a fixed two-sided cell; we show that this is equivalent to the centre with a known monoidal abelian category (a categorification of the J-ring associated to the same two-sided cell). ©2015en_US
dc.relation.isversionofhttps://web.math.sinica.edu.tw/bulletin_ns/20151/2015101.pdfen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleTruncated convolution of character sheavesen_US
dc.typeArticleen_US
dc.identifier.citationLusztig, G., "Truncated convolution of character sheaves." Bulletin of the Institute of Mathematics, Academia sinica 10, 1 (2015): p. 1-57 url https://web.math.sinica.edu.tw/bulletin_ns/20151/2015101.pdf ©2015 Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalBulletin of the Institute of Mathematics, Academia sinicaen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dspace.date.submission2020-03-31T17:18:31Z
mit.journal.volume10en_US
mit.journal.issue1en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record