MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Defect tolerance: fundamental limits and examples

Author(s)
Tang, Jennifer Susan; Wang, Da; Polyanskiy, Yury; Wornell, Gregory
Thumbnail
DownloadAccepted version (503.4Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
This paper addresses the problem of adding redundancy to a collection of physical objects so that the overall system is more robust to failures. In contrast to its information counterpart, which can exploit parity to protect multiple information symbols from a single erasure, physical redundancy can only be realized through duplication and substitution of objects. We propose a bipartite graph model for designing defect-tolerant systems, in which the defective objects are replaced by the judiciously connected redundant objects. The fundamental limits of this model are characterized under various asymptotic settings and both asymptotic and finite-size systems that approach these limits are constructed. Among other results, we show that the simple modular redundancy is in general suboptimal. As we develop, this combinatorial problem of defect tolerant system design has a natural interpretation as one of graph coloring, and the analysis is significantly different from that traditionally used in information redundancy for error-control codes.©2018
Date issued
2018-07
URI
https://hdl.handle.net/1721.1/124983
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
IEEE Transactions on Information Theory
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Tang, Jennifer Susan, Da Wang, Yury Polyanskiy, and Gregory Wornell, "Defect tolerance: fundamental limits and examples." IEEE Transactions on Information Theory 64, 7 (July 2018): p. 5240-60 doi 10.1109/TIT.2017.2771417 ©2018 Author(s)
Version: Author's final manuscript
ISSN
1557-9654
0018-9448

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.