MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Social Learning Equilibria

Author(s)
Mossel, Elchanan; Mueller-Frank, Manuel; Sly, Allan; Tamuz, Omer
Thumbnail
DownloadAccepted version (425.5Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We consider social learning settings in which a group of agents face uncertainty regarding a state of the world, observe private signals, share the same utility function, and act in a general dynamic setting. We introduce Social Learning Equilibria, a static equilibrium concept that abstracts away from the details of the given dynamics, but nevertheless captures the corresponding asymptotic equilibrium behavior. We establish strong equilibrium properties on agreement, herding, and information aggregation. Keywords: Consensus; Information Aggregation; Herding
Date issued
2019-10
URI
https://hdl.handle.net/1721.1/125593
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Proceedings of the 2018 ACM Conference on Economics and Computation
Publisher
ACM
Citation
Mossel, Elchanan et al., "Social Learning Equilibria." EC '18: Proceedings of the 2018 ACM Conference on Economics and Computation (EC), June 2018, Ithaca NY, Association for Computing Machinery, 2019
Version: Author's final manuscript
ISBN
9781450358293

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.