MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Engineering of a high lipid producing Yarrowia lipolytica strain

Author(s)
Friedlander, Jonathan; Tsakraklides, Vasiliki; Kamineni, Annapurna; Greenhagen, Emily H.; Consiglio, Andrew L.; MacEwen, Kyle; Crabtree, Donald V.; Afshar, Jonathan; Nugent, Rebecca L.; Hamilton, Maureen A.; Shaw, A. Joe; South, Colin R.; Stephanopoulos, Gregory; Brevnova, Elena E.; ... Show more Show less
Thumbnail
DownloadPublished version (2.453Mb)
Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Background: Microbial lipids are produced by many oleaginous organisms including the well-characterized yeast Yarrowia lipolytica, which can be engineered for increased lipid yield by up-regulation of the lipid biosynthetic pathway and down-regulation or deletion of competing pathways. Results: We describe a strain engineering strategy centered on diacylglycerol acyltransferase (DGA) gene overexpression that applied combinatorial screening of overexpression and deletion genetic targets to construct a high lipid producing yeast biocatalyst. The resulting strain, NS432, combines overexpression of a heterologous DGA1 enzyme from Rhodosporidium toruloides, a heterlogous DGA2 enzyme from Claviceps purpurea, and deletion of the native TGL3 lipase regulator. These three genetic modifications, selected for their effect on lipid production, enabled a 77 % lipid content and 0.21 g lipid per g glucose yield in batch fermentation. In fed-batch glucose fermentation NS432 produced 85 g/L lipid at a productivity of 0.73 g/L/h. Conclusions: The yields, productivities, and titers reported in this study may further support the applied goal of cost effective, large -scale microbial lipid production for use as biofuels and biochemicals. Keywords: Yarrowia lipolytica, Lipid accumulation, Oleaginous yeast, Metabolic engineering
Date issued
2016-03
URI
https://hdl.handle.net/1721.1/125833
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Biotechnology for Biofuels
Publisher
Springer Nature
Citation
Friedlander, Jonathan, Vasiliki Tsakraklides, Annapurna Kamineni et al. "Engineering of a high lipid producing Yarrowia lipolytica strain" Biotechnology for Biofuels, 9,77 (March 2016): p. 1-12. © 2016 Friedlander et al.
Version: Final published version
ISSN
1754-6834

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.