Show simple item record

dc.contributor.authorFriedlander, Jonathan
dc.contributor.authorTsakraklides, Vasiliki
dc.contributor.authorKamineni, Annapurna
dc.contributor.authorGreenhagen, Emily H.
dc.contributor.authorConsiglio, Andrew L.
dc.contributor.authorMacEwen, Kyle
dc.contributor.authorCrabtree, Donald V.
dc.contributor.authorAfshar, Jonathan
dc.contributor.authorNugent, Rebecca L.
dc.contributor.authorHamilton, Maureen A.
dc.contributor.authorShaw, A. Joe
dc.contributor.authorSouth, Colin R.
dc.contributor.authorStephanopoulos, Gregory
dc.contributor.authorBrevnova, Elena E.
dc.date.accessioned2020-06-17T14:09:51Z
dc.date.available2020-06-17T14:09:51Z
dc.date.issued2016-03
dc.date.submitted2015-12
dc.identifier.issn1754-6834
dc.identifier.urihttps://hdl.handle.net/1721.1/125833
dc.description.abstractBackground: Microbial lipids are produced by many oleaginous organisms including the well-characterized yeast Yarrowia lipolytica, which can be engineered for increased lipid yield by up-regulation of the lipid biosynthetic pathway and down-regulation or deletion of competing pathways. Results: We describe a strain engineering strategy centered on diacylglycerol acyltransferase (DGA) gene overexpression that applied combinatorial screening of overexpression and deletion genetic targets to construct a high lipid producing yeast biocatalyst. The resulting strain, NS432, combines overexpression of a heterologous DGA1 enzyme from Rhodosporidium toruloides, a heterlogous DGA2 enzyme from Claviceps purpurea, and deletion of the native TGL3 lipase regulator. These three genetic modifications, selected for their effect on lipid production, enabled a 77 % lipid content and 0.21 g lipid per g glucose yield in batch fermentation. In fed-batch glucose fermentation NS432 produced 85 g/L lipid at a productivity of 0.73 g/L/h. Conclusions: The yields, productivities, and titers reported in this study may further support the applied goal of cost effective, large -scale microbial lipid production for use as biofuels and biochemicals. Keywords: Yarrowia lipolytica, Lipid accumulation, Oleaginous yeast, Metabolic engineeringen_US
dc.description.sponsorshipNovogy, Inc.en_US
dc.language.isoen
dc.publisherSpringer Natureen_US
dc.relation.isversionofhttps://dx.doi.org/10.1186/S13068-016-0492-3en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceBioMed Central (BMC)en_US
dc.titleEngineering of a high lipid producing Yarrowia lipolytica strainen_US
dc.typeArticleen_US
dc.identifier.citationFriedlander, Jonathan, Vasiliki Tsakraklides, Annapurna Kamineni et al. "Engineering of a high lipid producing Yarrowia lipolytica strain" Biotechnology for Biofuels, 9,77 (March 2016): p. 1-12. © 2016 Friedlander et al.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemical Engineeringen_US
dc.relation.journalBiotechnology for Biofuelsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-09-12T12:28:24Z
dspace.orderedauthorsFriedlander, Jonathan; Tsakraklides, Vasiliki; Kamineni, Annapurna; Greenhagen, Emily H.; Consiglio, Andrew L.; MacEwen, Kyle; Crabtree, Donald V.; Afshar, Jonathan; Nugent, Rebecca L.; Hamilton, Maureen A.; Shaw, A. Joe; South, Colin R.; Stephanopoulos, Gregory; Brevnova, Elena E.en_US
dspace.date.submission2019-09-12T12:28:29Z
mit.journal.volume9en_US
mit.journal.issue77en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record