MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A systems biology pipeline identifies regulatory networks for stem cell engineering

Author(s)
Kinney, Melissa A.; Vo, Linda T.; Frame, Jenna M.; Barragan, Jessica; Conway, Ashlee J.; Li, Shuai; Wong, Kwok-Kin; Collins, James J.; Cahan, Patrick; North, Trista E.; Lauffenburger, Douglas A; Daley, George Q.; ... Show more Show less
Thumbnail
DownloadAccepted version (1.955Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
A major challenge for stem cell engineering is achieving a holistic understanding of the molecular networks and biological processes governing cell differentiation. To address this challenge, we describe a computational approach that combines gene expression analysis, previous knowledge from proteomic pathway informatics and cell signaling models to delineate key transitional states of differentiating cells at high resolution. Our network models connect sparse gene signatures with corresponding, yet disparate, biological processes to uncover molecular mechanisms governing cell fate transitions. This approach builds on our earlier CellNet and recent trajectory-defining algorithms, as illustrated by our analysis of hematopoietic specification along the erythroid lineage, which reveals a role for the EGF receptor family member, ErbB4, as an important mediator of blood development. We experimentally validate this prediction and perturb the pathway to improve erythroid maturation from human pluripotent stem cells. These results exploit an integrative systems perspective to identify new regulatory processes and nodes useful in cell engineering.
Date issued
2019-07
URI
https://hdl.handle.net/1721.1/125922
Department
Massachusetts Institute of Technology. Department of Biological Engineering; Massachusetts Institute of Technology. Institute for Medical Engineering & Science; Broad Institute of MIT and Harvard; Harvard University--MIT Division of Health Sciences and Technology
Journal
Nature Biotechnology
Publisher
Springer Science and Business Media LLC
Citation
Kinney, Melissa A. et al. "A systems biology pipeline identifies regulatory networks for stem cell engineering." Nature Biotechnology 37, 7 (July 2019): 810–818 © 2019 Springer Nature
Version: Author's final manuscript
ISSN
1087-0156
1546-1696

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.