Show simple item record

dc.contributor.authorKinney, Melissa A.
dc.contributor.authorVo, Linda T.
dc.contributor.authorFrame, Jenna M.
dc.contributor.authorBarragan, Jessica
dc.contributor.authorConway, Ashlee J.
dc.contributor.authorLi, Shuai
dc.contributor.authorWong, Kwok-Kin
dc.contributor.authorCollins, James J.
dc.contributor.authorCahan, Patrick
dc.contributor.authorNorth, Trista E.
dc.contributor.authorLauffenburger, Douglas A
dc.contributor.authorDaley, George Q.
dc.date.accessioned2020-06-22T19:47:30Z
dc.date.available2020-06-22T19:47:30Z
dc.date.issued2019-07
dc.date.submitted2017-12
dc.identifier.issn1087-0156
dc.identifier.issn1546-1696
dc.identifier.urihttps://hdl.handle.net/1721.1/125922
dc.description.abstractA major challenge for stem cell engineering is achieving a holistic understanding of the molecular networks and biological processes governing cell differentiation. To address this challenge, we describe a computational approach that combines gene expression analysis, previous knowledge from proteomic pathway informatics and cell signaling models to delineate key transitional states of differentiating cells at high resolution. Our network models connect sparse gene signatures with corresponding, yet disparate, biological processes to uncover molecular mechanisms governing cell fate transitions. This approach builds on our earlier CellNet and recent trajectory-defining algorithms, as illustrated by our analysis of hematopoietic specification along the erythroid lineage, which reveals a role for the EGF receptor family member, ErbB4, as an important mediator of blood development. We experimentally validate this prediction and perturb the pathway to improve erythroid maturation from human pluripotent stem cells. These results exploit an integrative systems perspective to identify new regulatory processes and nodes useful in cell engineering.en_US
dc.description.sponsorshipNational Institute of General Medical Sciences (NIGMS) (Grant R01-GM081336)en_US
dc.description.sponsorshipNational Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (Grant R24-DK092760)en_US
dc.description.sponsorshipNational Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (R24-DK49216)en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/s41587-019-0159-2en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceProf. Collins via Howard Silveren_US
dc.titleA systems biology pipeline identifies regulatory networks for stem cell engineeringen_US
dc.typeArticleen_US
dc.identifier.citationKinney, Melissa A. et al. "A systems biology pipeline identifies regulatory networks for stem cell engineering." Nature Biotechnology 37, 7 (July 2019): 810–818 © 2019 Springer Natureen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Medical Engineering & Scienceen_US
dc.contributor.departmentBroad Institute of MIT and Harvarden_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.relation.journalNature Biotechnologyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-06-22T14:34:42Z
dspace.date.submission2020-06-22T14:34:44Z
mit.journal.volume37en_US
mit.journal.issue7en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record