Show simple item record

dc.contributor.authorBeaulieu-Laroche, Lou
dc.contributor.authorToloza, Enrique
dc.contributor.authorVan der Goes, Marie-Sophie
dc.contributor.authorLafourcade, Mathieu
dc.contributor.authorBarnagian, Derrick G.
dc.contributor.authorWilliams, Ziv M.
dc.contributor.authorEskandar, Emad N.
dc.contributor.authorFrosch, Matthew P.
dc.contributor.authorCash, Sydney S.
dc.contributor.authorHarnett, Mark T.
dc.date.accessioned2020-07-09T20:05:16Z
dc.date.available2020-07-09T20:05:16Z
dc.date.issued2018-10
dc.date.submitted2018-06
dc.identifier.issn0092-8674
dc.identifier.urihttps://hdl.handle.net/1721.1/126118
dc.description.abstractThe biophysical features of neurons shape information processing in the brain. Cortical neurons are larger in humans than in other species, but it is unclear how their size affects synaptic integration. Here, we perform direct electrical recordings from human dendrites and report enhanced electrical compartmentalization in layer 5 pyramidal neurons. Compared to rat dendrites, distal human dendrites provide limited excitation to the soma, even in the presence of dendritic spikes. Human somas also exhibit less bursting due to reduced recruitment of dendritic electrogenesis. Finally, we find that decreased ion channel densities result in higher input resistance and underlie the lower coupling of human dendrites. We conclude that the increased length of human neurons alters their input-output properties, which will impact cortical computation. Video Abstract: Human cortical neurons exhibit a higher degree of voltage compartmentalization compared to rodent counterparts due to lower ion channel densities across larger dendritic surfaces.en_US
dc.description.sponsorshipNational Institutes of Health (Grant RO1NS106031)en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.cell.2018.08.045en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcePMCen_US
dc.titleEnhanced Dendritic Compartmentalization in Human Cortical Neuronsen_US
dc.typeArticleen_US
dc.identifier.citationBeaulieu-Laroche, Lou et al. "Enhanced Dendritic Compartmentalization in Human Cortical Neurons." Cell 175, 3 (October 2018): P643-651.e14en_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.relation.journalCellen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-12-10T13:03:45Z
dspace.date.submission2019-12-10T13:03:48Z
mit.journal.volume175en_US
mit.journal.issue3en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record