MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spectral Action in Betti Geometric Langlands

Author(s)
Yun, Zhiwei
Thumbnail
DownloadAccepted version (440.1Kb)
Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Let X be a smooth projective curve, G a reductive group, and BunG(X) the moduli of G-bundles on X. For each point of X, the Satake category acts by Hecke modifications on sheaves on BunG(X). We show that, for sheaves with nilpotent singular support, the action is locally constant with respect to the point of X. This equips sheaves with nilpotent singular support with a module structure over perfect complexes on the Betti moduli LocG∨ (X) of dual group local systems. In particular, we establish the “automorphic to Galois” direction in the Betti Geometric Langlands correspondence—to each indecomposable automorphic sheaf, we attach a dual group local system—and define the Betti version of V. Lafforgue’s excursion operators.
Date issued
2019-04
URI
https://hdl.handle.net/1721.1/126204
Department
Massachusetts Institute of Technology. Department of Mathematics
Journal
Israel journal of mathematics
Publisher
Springer Science and Business Media LLC
Citation
Nadler, David and Zhiwei Yun. “Spectral Action in Betti Geometric Langlands.” Israel journal of mathematics, vol. 232, 2019, pp. 299-349 © 2019 The Author(s)
Version: Author's final manuscript
ISSN
0021-2172

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.