Show simple item record

dc.contributor.authorYun, Zhiwei
dc.date.accessioned2020-07-15T16:11:42Z
dc.date.available2020-07-15T16:11:42Z
dc.date.issued2019-04
dc.date.submitted2018-09
dc.identifier.issn0021-2172
dc.identifier.urihttps://hdl.handle.net/1721.1/126204
dc.description.abstractLet X be a smooth projective curve, G a reductive group, and BunG(X) the moduli of G-bundles on X. For each point of X, the Satake category acts by Hecke modifications on sheaves on BunG(X). We show that, for sheaves with nilpotent singular support, the action is locally constant with respect to the point of X. This equips sheaves with nilpotent singular support with a module structure over perfect complexes on the Betti moduli LocG∨ (X) of dual group local systems. In particular, we establish the “automorphic to Galois” direction in the Betti Geometric Langlands correspondence—to each indecomposable automorphic sheaf, we attach a dual group local system—and define the Betti version of V. Lafforgue’s excursion operators.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1007/S11856-019-1871-9en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleSpectral Action in Betti Geometric Langlandsen_US
dc.typeArticleen_US
dc.identifier.citationNadler, David and Zhiwei Yun. “Spectral Action in Betti Geometric Langlands.” Israel journal of mathematics, vol. 232, 2019, pp. 299-349 © 2019 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematicsen_US
dc.relation.journalIsrael journal of mathematicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2019-11-24T15:15:59Z
dspace.date.submission2019-11-24T15:16:02Z
mit.journal.volume232en_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record