MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Limits of Chromosome Compaction by Loop-Extruding Motors

Author(s)
Banigan, Edward J; Mirny, Leonid A
Thumbnail
DownloadPublished version (590.4Kb)
Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
During mitosis, human chromosomes are linearly compacted about 1000-fold by loop-extruding motors. Recent experiments have shown that condensins extrude DNA loops but in a “one-sided” manner. This contrasts with existing models, which predict that symmetric, “two-sided” loop extrusion accounts for mitotic chromosome compaction. We explore whether one-sided extrusion, as it is currently seen in experiments, can compact chromosomes by developing a mean-field theoretical model for polymer compaction by motors that actively extrude loops and dynamically turnover. The model establishes a stringent upper bound of only about tenfold for compaction by strictly one-sided extrusion. We confirm this result with stochastic simulations. Thus, strictly one-sided extrusion as it has been observed so far cannot be the sole mechanism of chromosome compaction. However, as shown by the model, other two-sided or effectively two-sided mechanisms can achieve sufficient compaction.
Date issued
2019-07
URI
https://hdl.handle.net/1721.1/126349
Department
Massachusetts Institute of Technology. Institute for Medical Engineering and Science; Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review X
Publisher
American Physical Society (APS)
Citation
Banigan, Edward J. and Leonid A. Mirny. "Limits of Chromosome Compaction by Loop-Extruding Motors." Physical Review X 9, 3 (July 2019): 031007
Version: Final published version
ISSN
2160-3308

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.