MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

On the presence of solute-solvent transport coupling in reverse osmosis

Author(s)
Roy, Yagnaseni; Lienhard, John H
Thumbnail
DownloadPreprint solute solvent transport coupling.pdf (1.522Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The present work demonstrates that experimental salt passage data for reverse osmosis (RO) shows better agreement with models capturing solute-solvent transport coupling (convective coupling), especially as the applied pressure is increased. This conclusion is drawn based on five RO data sets using cellulose acetate and polyamide membranes that were modeled using the classical solution diffusion (SD) model, which does not include convection, as well as the convection-inclusive SD model introduced by Paul in 2004 and the pore-based model, which also includes convective coupling. The improved model-to-experimental data agreement with solute-solvent coupling is more easily noticed from salt passage variation with pressure than from the most commonly studied RO metric, salt rejection ratio. The importance of solute-solvent coupling in RO indicates that free volume in the membrane influences the description of membrane transport, and that these voids ‘open up’ as applied pressure is increased. The derivation of the pore-based and SD models from the Maxwell-Stefan equations is shown, and major differences in assumptions used in their derivation are discussed. A study of these differences should aid membrane researchers in selecting the most appropriate modeling approach for a given solute-solvent-membrane system.
Date issued
2020-10
URI
https://hdl.handle.net/1721.1/126411
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Journal of Membrane Science
Publisher
Elsevier BV
Citation
Roy, Yagnaseni and John H.Lienhard V. "On the presence of solute-solvent transport coupling in reverse osmosis." Forthcoming in Journal of Membrane Science 611 (October 2020): 118272 © 2020 Elsevier B.V.
Version: Author's final manuscript
ISSN
0376-7388

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.