MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Privately computing set-maximal matches in genomic data

Author(s)
Sotiraki, Katerina; Ghosh, Esha; Chen, Hao
Thumbnail
Download12920_2020_Article_718.pdf (1.592Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Background: Finding long matches in deoxyribonucleic acid (DNA) sequences in large aligned genetic sequences is a problem of great interest. A paradigmatic application is the identification of distant relatives via large common subsequences in DNA data. However, because of the sensitive nature of genomic data such computations without security consideration might compromise the privacy of the individuals involved. Methods: The secret sharing technique enables the computation of matches while respecting the privacy of the inputs of the parties involved. This method requires interaction that depends on the circuit depth needed for the computation. Results: We design a new depth-optimized algorithm for computing set-maximal matches between a database of aligned genetic sequences and the DNA of an individual while respecting the privacy of both the database owner and the individual. We then implement and evaluate our protocol. Conclusions: Using modern cryptographic techniques, difficult genomic computations are performed in a privacy-preserving way. We enrich this research area by proposing a privacy-preserving protocol for set-maximal matches.
Date issued
2020-07
URI
https://hdl.handle.net/1721.1/127190
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
BMC Medical Genomics
Publisher
Springer Science and Business Media LLC
Citation
Sotiraki, Katerina et al. "Privately computing set-maximal matches in genomic data." BMC Medical Genomics 13, 72 (July 2020): 72 © 2020 Springer Nature
Version: Final published version
ISSN
1755-8794

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.