Show simple item record

dc.contributor.authorSotiraki, Katerina
dc.contributor.authorGhosh, Esha
dc.contributor.authorChen, Hao
dc.date.accessioned2020-09-04T21:10:13Z
dc.date.available2020-09-04T21:10:13Z
dc.date.issued2020-07
dc.identifier.issn1755-8794
dc.identifier.urihttps://hdl.handle.net/1721.1/127190
dc.description.abstractBackground: Finding long matches in deoxyribonucleic acid (DNA) sequences in large aligned genetic sequences is a problem of great interest. A paradigmatic application is the identification of distant relatives via large common subsequences in DNA data. However, because of the sensitive nature of genomic data such computations without security consideration might compromise the privacy of the individuals involved. Methods: The secret sharing technique enables the computation of matches while respecting the privacy of the inputs of the parties involved. This method requires interaction that depends on the circuit depth needed for the computation. Results: We design a new depth-optimized algorithm for computing set-maximal matches between a database of aligned genetic sequences and the DNA of an individual while respecting the privacy of both the database owner and the individual. We then implement and evaluate our protocol. Conclusions: Using modern cryptographic techniques, difficult genomic computations are performed in a privacy-preserving way. We enrich this research area by proposing a privacy-preserving protocol for set-maximal matches.en_US
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionofhttp://dx.doi.org/10.1186/s12920-020-0718-xen_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceBioMed Centralen_US
dc.titlePrivately computing set-maximal matches in genomic dataen_US
dc.typeArticleen_US
dc.identifier.citationSotiraki, Katerina et al. "Privately computing set-maximal matches in genomic data." BMC Medical Genomics 13, 72 (July 2020): 72 © 2020 Springer Natureen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalBMC Medical Genomicsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-07-26T03:50:10Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.date.submission2020-07-26T03:50:10Z
mit.journal.volume13en_US
mit.journal.issueS7en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record