MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Momentum and Energy Predict the Backwater Rise Generated by a Large Wood Jam

Author(s)
Follett, E.; Schalko, Isabella; Nepf, Heidi
Thumbnail
Download2020GL089346.pdf (4.066Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Wood reintroduction is now considered an important aspect of stream restoration, due to ecohydraulic benefits associated with wood presence. Channel‐spanning wood jams create an upstream backwater, increasing flow heterogeneity, sediment deposition, and ecological productivity, but also flood risk. Backwater rise prediction is necessary to evaluate flood hazards in hydraulic models, improve design of engineered logjam projects, and compare jam effects across river systems. We present experimental results demonstrating that a jam can be modeled as a porous obstruction generating momentum loss proportional to the number, size, and packing density of the logs and the jam length. Energy and momentumconstraints are combined to predict backwater rise from unit discharge and a dimensionless structural parameter. This novel approach allows description of preexisting jams with a common metric. The model was used to demonstrate how backwater length, pool size, and upstream sediment deposition depend on jam structure and channel slope.
Date issued
2020-08
URI
https://hdl.handle.net/1721.1/127656
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Geophysical Research Letters
Publisher
American Geophysical Union (AGU)
Citation
Follett, E. et al. "Momentum and Energy Predict the Backwater Rise Generated by a Large Wood Jam." Geophysical Research Letters 47, 17 (September 2020): e2020GL089346. © 2020 The Authors.
Version: Final published version
ISSN
0094-8276
1944-8007

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.