MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Universality of EPR pairs in entanglement-assisted communication complexity, and the communication cost of state conversion

Author(s)
Harrow, Aram W.
Thumbnail
DownloadPublished version (606.6Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 3.0 unported license https://creativecommons.org/licenses/by/3.0/
Metadata
Show full item record
Abstract
In this work we consider the role of entanglement assistance in quantum communication protocols, focusing, in particular, on whether the type of shared entangled state can affect the quantum communication complexity of a function. This question is interesting because in some other settings in quantum information, such as non-local games, or tasks that involve quantum communication between players and referee, or simulating bipartite unitaries or communication channels, maximally entangled states are known to be less useful as a resource than some partially entangled states. By contrast, we prove that the bounded-error entanglement-assisted quantum communication complexity of a partial or total function cannot be improved by more than a constant factor by replacing maximally entangled states with arbitrary entangled states. In particular, we show that every quantum communication protocol using Q qubits of communication and arbitrary shared entanglement can be-approximated by a protocol using O(Q/+log(1/)/) qubits of communication and only EPR pairs as shared entanglement. This conclusion is opposite of the common wisdom in the study of non-local games, where it has been shown, for example, that the I3322 inequality has a non-local strategy using a non-maximally entangled state, which surpasses the winning probability achievable by any strategy using a maximally entangled state of any dimension [17]. We leave open the question of how much the use of a shared maximally entangled state can reduce the quantum communication complexity of a function. Our second result concerns an old question in quantum information theory: How much quantum communication is required to approximately convert one pure bipartite entangled state into another? We give simple and efficiently computable upper and lower bounds. Given two bipartite states |χi and |υi, we define a natural quantity, d∞(|χi, |υi), which we call the `∞ Earth Mover’s distance, and we show that the communication cost of converting between |χi and |υi is upper bounded by a constant multiple of d∞(|χi, |υi). Here d∞(|χi, |υi) may be informally described as the minimum over all transports between the log of the Schmidt coefficients of |χi and those of |υi, of the maximum distance that any amount of mass must be moved in that transport. A precise definition is given in the introduction. Furthermore, we prove a complementary lower bound on the cost of state conversion by the-Smoothed `∞-Earth Mover’s Distance, which is a natural smoothing of the `∞-Earth Mover’s Distance that we will define via a connection with optimal transport theory.
Date issued
2019-07
URI
https://hdl.handle.net/1721.1/128238
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Leibniz International Proceedings in Informatics, LIPIcs
Publisher
Schloss Dagstuhl, Leibniz Center for Informatics
Citation
Coudron, Matthew and Aram W. Harrow. “Universality of EPR pairs in entanglement-assisted communication complexity, and the communication cost of state conversion.” LIPIcs, Leibniz international proceedings in informatics, 137, 20, 34th Computational Complexity Conference (CCC 2019), July 18-20, 2019, New Brunswick, NJ: 1-25 © 2019 The Author(s)
Version: Final published version
ISBN
9783959771160

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.