MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reducing Uncertainty in Contrail Radiative Forcing Resulting from Uncertainty in Ice Crystal Properties

Author(s)
Sanz-Morère, Inés; Eastham, Sebastian David; Speth, Raymond L; Barrett, Steven R. H.
Thumbnail
Downloadacs.estlett.0c00150.pdf (1.267Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
The radiative forcing resulting from condensation clouds behind aircraft (“contrails”) has been estimated to have an effect on the same order of magnitude as all accumulated aviation-attributable CO2. However, contrail impacts are highly uncertain, with estimates of total contrail-driven forcing made in the past five years varying by a factor of 4. Two of the key driving uncertainties are the crystal shape and size, which describe the cloud optical properties. Here we combine data from high-fidelity scattering simulations of single crystals with in situ measurement of bulk contrail ice properties to bound the range of realistic optical properties for contrail ice. Accounting for the full range of measured contrail microphysical evolution pathways, and for a given estimate of contrail coverage, we find that the global net radiative forcing due to contrails in 2015 is between 8.6 and 10.7 mW/m². Relative to the midpoint, this uncertainty range is less than one-quarter of that recently reported in the literature. This reduction in uncertainty is primarily due to the elimination of spheres as a plausible long-term shape for contrail ice, leaving questions of contrail coverage and optical depth as the primary causes of contrail forcing uncertainty.
Date issued
2020-03
URI
https://hdl.handle.net/1721.1/128696
Department
Massachusetts Institute of Technology. Laboratory for Aviation and the Environment; Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Environmental Science and Technology Letters
Publisher
American Chemical Society (ACS)
Citation
Sanz-Morère, Inés et al. "Reducing Uncertainty in Contrail Radiative Forcing Resulting from Uncertainty in Ice Crystal Properties." Environmental Science and Technology Letters 7, 6 (March 2020): 371–375 © 2020 American Chemical Society
Version: Final published version
ISSN
2328-8930
2328-8930

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.