MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Disease Knowledge Transfer Across Neurodegenerative Diseases

Author(s)
Marinescu, Razvan V; Lorenzi, Marco; Blumberg, Stefano B.; Young, Alexandra L.; Planell-Morell, Pere; Oxtoby, Neil P.; Eshaghi, Arman; Yong, Keir X.; Crutch, Sebastian J.; Golland, Polina; Alexander, Daniel C.; ... Show more Show less
Thumbnail
DownloadSubmitted version (788.4Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
We introduce Disease Knowledge Transfer (DKT), a novel technique for transferring biomarker information between related neurodegenerative diseases. DKT infers robust multimodal biomarker trajectories in rare neurodegenerative diseases even when only limited, unimodal data is available, by transferring information from larger multimodal datasets from common neurodegenerative diseases. DKT is a joint-disease generative model of biomarker progressions, which exploits biomarker relationships that are shared across diseases. Our proposed method allows, for the first time, the estimation of plausible multimodal biomarker trajectories in Posterior Cortical Atrophy (PCA), a rare neurodegenerative disease where only unimodal MRI data is available. For this we train DKT on a combined dataset containing subjects with two distinct diseases and sizes of data available: (1) a larger, multimodal typical AD (tAD) dataset from the TADPOLE Challenge, and (2) a smaller unimodal Posterior Cortical Atrophy (PCA) dataset from the Dementia Research Centre (DRC), for which only a limited number of Magnetic Resonance Imaging (MRI) scans are available. Although validation is challenging due to lack of data in PCA, we validate DKT on synthetic data and two patient datasets (TADPOLE and PCA cohorts), showing it can estimate the ground truth parameters in the simulation and predict unseen biomarkers on the two patient datasets. While we demonstrated DKT on Alzheimer’s variants, we note DKT is generalisable to other forms of related neurodegenerative diseases. Source code for DKT is available online: https://github.com/mrazvan22/dkt.
Date issued
2019-10
URI
https://hdl.handle.net/1721.1/128959
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
Lecture Notes in Computer Science
Publisher
Springer International Publishing
Citation
Marinescu, Răzvan V. et al. "Disease Knowledge Transfer Across Neurodegenerative Diseases." MICCAI 2019: Medical Image Computing and Computer Assisted Intervention, Lecture Notes in Computer Science, 11765, Springer Nature, 2019, 860-868. © 2019 Springer Nature
Version: Original manuscript
ISBN
9783030322441
9783030322458
ISSN
0302-9743
1611-3349

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.