Show simple item record

dc.contributor.authorMarinescu, Razvan V
dc.contributor.authorLorenzi, Marco
dc.contributor.authorBlumberg, Stefano B.
dc.contributor.authorYoung, Alexandra L.
dc.contributor.authorPlanell-Morell, Pere
dc.contributor.authorOxtoby, Neil P.
dc.contributor.authorEshaghi, Arman
dc.contributor.authorYong, Keir X.
dc.contributor.authorCrutch, Sebastian J.
dc.contributor.authorGolland, Polina
dc.contributor.authorAlexander, Daniel C.
dc.date.accessioned2021-01-05T20:30:47Z
dc.date.available2021-01-05T20:30:47Z
dc.date.issued2019-10
dc.identifier.isbn9783030322441
dc.identifier.isbn9783030322458
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttps://hdl.handle.net/1721.1/128959
dc.description.abstractWe introduce Disease Knowledge Transfer (DKT), a novel technique for transferring biomarker information between related neurodegenerative diseases. DKT infers robust multimodal biomarker trajectories in rare neurodegenerative diseases even when only limited, unimodal data is available, by transferring information from larger multimodal datasets from common neurodegenerative diseases. DKT is a joint-disease generative model of biomarker progressions, which exploits biomarker relationships that are shared across diseases. Our proposed method allows, for the first time, the estimation of plausible multimodal biomarker trajectories in Posterior Cortical Atrophy (PCA), a rare neurodegenerative disease where only unimodal MRI data is available. For this we train DKT on a combined dataset containing subjects with two distinct diseases and sizes of data available: (1) a larger, multimodal typical AD (tAD) dataset from the TADPOLE Challenge, and (2) a smaller unimodal Posterior Cortical Atrophy (PCA) dataset from the Dementia Research Centre (DRC), for which only a limited number of Magnetic Resonance Imaging (MRI) scans are available. Although validation is challenging due to lack of data in PCA, we validate DKT on synthetic data and two patient datasets (TADPOLE and PCA cohorts), showing it can estimate the ground truth parameters in the simulation and predict unseen biomarkers on the two patient datasets. While we demonstrated DKT on Alzheimer’s variants, we note DKT is generalisable to other forms of related neurodegenerative diseases. Source code for DKT is available online: https://github.com/mrazvan22/dkt.en_US
dc.description.sponsorshipNIH (Grants NAC-P41EB015902 and U01-AG024904)en_US
dc.description.sponsorshipDOD (Award W81XWH-12-2-0012)en_US
dc.language.isoen
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-030-32245-8_95en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleDisease Knowledge Transfer Across Neurodegenerative Diseasesen_US
dc.typeBooken_US
dc.identifier.citationMarinescu, Răzvan V. et al. "Disease Knowledge Transfer Across Neurodegenerative Diseases." MICCAI 2019: Medical Image Computing and Computer Assisted Intervention, Lecture Notes in Computer Science, 11765, Springer Nature, 2019, 860-868. © 2019 Springer Natureen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalLecture Notes in Computer Scienceen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2020-12-15T19:21:59Z
dspace.orderedauthorsMarinescu, RV; Lorenzi, M; Blumberg, SB; Young, AL; Planell-Morell, P; Oxtoby, NP; Eshaghi, A; Yong, KX; Crutch, SJ; Golland, P; Alexander, DCen_US
dspace.date.submission2020-12-15T19:22:05Z
mit.journal.volume11765en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record