High Dimensional Inference with Random Maximum A-Posteriori Perturbations
Author(s)
Maji, Subhransu; Jaakkola, Tommi S
DownloadSubmitted version (1.022Mb)
 Open Access Policy
Open Access Policy
Creative Commons Attribution-Noncommercial-Share Alike
Terms of use
Metadata
Show full item recordAbstract
This paper presents a new approach, called perturb-max, for high-dimensional statistical inference in graphical models that is based on applying random perturbations followed by optimization. This framework injects randomness into maximum a-posteriori (MAP) predictors by randomly perturbing the potential function for the input. A classic result from extreme value statistics asserts that perturb-max operations generate unbiased samples from the Gibbs distribution using high-dimensional perturbations. Unfortunately, the computational cost of generating so many high-dimensional random variables can be prohibitive. However, when the perturbations are of low dimension, sampling the perturb-max prediction is as efficient as MAP optimization. This paper shows that the expected value of perturb-max inference with low dimensional perturbations can be used sequentially to generate unbiased samples from the Gibbs distribution. Furthermore the expected value of the maximal perturbations is a natural bound on the entropy of such perturb-max models. A measure concentration result for perturb-max values shows that the deviation of their sampled average from its expectation decays exponentially in the number of samples, allowing effective approximation of the expectation.
Date issued
2019-05Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer ScienceJournal
IEEE Transactions on Information Theory
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Hazan, Tamir et al. “High Dimensional Inference with Random Maximum A-Posteriori Perturbations.” IEEE Transactions on Information Theory, 65, 10 (May 2019): 6539 - 6560 © 2019 The Author(s)
Version: Original manuscript 
ISSN
0018-9448