Show simple item record

dc.contributor.authorMaji, Subhransu
dc.contributor.authorJaakkola, Tommi S
dc.date.accessioned2021-01-11T18:36:43Z
dc.date.available2021-01-11T18:36:43Z
dc.date.issued2019-05
dc.date.submitted2017-06
dc.identifier.issn0018-9448
dc.identifier.urihttps://hdl.handle.net/1721.1/129369
dc.description.abstractThis paper presents a new approach, called perturb-max, for high-dimensional statistical inference in graphical models that is based on applying random perturbations followed by optimization. This framework injects randomness into maximum a-posteriori (MAP) predictors by randomly perturbing the potential function for the input. A classic result from extreme value statistics asserts that perturb-max operations generate unbiased samples from the Gibbs distribution using high-dimensional perturbations. Unfortunately, the computational cost of generating so many high-dimensional random variables can be prohibitive. However, when the perturbations are of low dimension, sampling the perturb-max prediction is as efficient as MAP optimization. This paper shows that the expected value of perturb-max inference with low dimensional perturbations can be used sequentially to generate unbiased samples from the Gibbs distribution. Furthermore the expected value of the maximal perturbations is a natural bound on the entropy of such perturb-max models. A measure concentration result for perturb-max values shows that the deviation of their sampled average from its expectation decays exponentially in the number of samples, allowing effective approximation of the expectation.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionof10.1109/TIT.2019.2916805en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleHigh Dimensional Inference with Random Maximum A-Posteriori Perturbationsen_US
dc.typeArticleen_US
dc.identifier.citationHazan, Tamir et al. “High Dimensional Inference with Random Maximum A-Posteriori Perturbations.” IEEE Transactions on Information Theory, 65, 10 (May 2019): 6539 - 6560 © 2019 The Author(s)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalIEEE Transactions on Information Theoryen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2020-12-21T16:25:01Z
dspace.orderedauthorsHazan, T; Orabona, F; Sarwate, AD; Maji, S; Jaakkola, TSen_US
dspace.date.submission2020-12-21T16:25:08Z
mit.journal.volume65en_US
mit.journal.issue10en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record