MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Impact-induced glass-to-rubber transition of polyurea under high-velocity temperature-controlled microparticle impact

Author(s)
Sun, Yuchen; Kooi, Steven E; Nelson, Keith Adam; Hsieh, Alex J; Veysset, David Georges
Thumbnail
DownloadAccepted version (639.7Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Deformation-induced glass transition in segmented elastomers has been proposed to allow highly desirable enhanced energy dissipation. In this study, we investigate the temperature-dependent microscale impact response of polyurea at a fixed impact velocity. We observe a local elevated impact energy absorption around 115 °C, which is attributed to the glass-to-rubber transition temperature under the present high-rate dynamic loading. Dielectric spectroscopy was performed, and the soft-segmental α2-relaxation was extracted and fit with a Havriliak-Negami function. The α2-relaxation frequency at 115 °C correlates well with an order-of-magnitude estimate of the equivalent frequency of deformation. This work further supports the importance of the dynamical Tg as an important consideration in the design of impact resistant materials.
Date issued
2020-07
URI
https://hdl.handle.net/1721.1/129665
Department
Massachusetts Institute of Technology. Department of Chemistry; Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies
Journal
Applied Physics Letters
Publisher
AIP Publishing
Citation
Sun, Yuchen et al. "Impact-induced glass-to-rubber transition of polyurea under high-velocity temperature-controlled microparticle impact." 117, 2 (July 2020): 021905 © 2020 Author(s)
Version: Author's final manuscript
ISSN
0003-6951
1077-3118

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.