Show simple item record

dc.contributor.authorChitnis, Rohan
dc.contributor.authorKaelbling, Leslie P
dc.contributor.authorLozano-Pérez, Tomás
dc.date.accessioned2021-02-16T20:38:23Z
dc.date.available2021-02-16T20:38:23Z
dc.date.issued2019-05
dc.identifier.isbn9781538660270
dc.identifier.issn2577-087X
dc.identifier.otherINSPEC: 18903666
dc.identifier.urihttps://hdl.handle.net/1721.1/129777
dc.description.abstractMulti-object manipulation problems in continuous state and action spaces can be solved by planners that search over sampled values for the continuous parameters of operators. The efficiency of these planners depends critically on the effectiveness of the samplers used, but effective sampling in turn depends on details of the robot, environment, and task. Our strategy is to learn functions called speciatizers that generate values for continuous operator parameters, given a state description and values for the discrete parameters. Rather than trying to learn a single specializer for each operator from large amounts of data on a single task, we take a modular meta-learning approach. We train on multiple tasks and learn a variety of specializers that, on a new task, can be quickly adapted using relatively little data - thus, our system learns quickly to plan quickly using these specializers. We validate our approach experimentally in simulated 3D pick-and-place tasks with continuous state and action spaces. Visit http://tinyurl.com/chitnis-icra-19 for a supplementary video.en_US
dc.description.sponsorshipNSF (Grants 1420316, 1523767, 1723381)en_US
dc.description.sponsorshipAFOSR (Grant FA9550-17-1-0165)en_US
dc.description.sponsorshipNSF (Fellowship)en_US
dc.language.isoen
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/ICRA.2019.8794342en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleLearning Quickly to Plan Quickly Using Modular Meta-Learningen_US
dc.typeArticleen_US
dc.identifier.citationChitnis, Rohan et al. "Learning quickly to plan quickly using modular meta-learning" IEEE - Proceedings of the International Conference on Robotics and Automation, May 2019, Montreal, Canada, Institute of Electrical and Electronics Engineers © 2019 IEEE.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journalIEEE - Proceedings of the International Conference on Robotics and Automationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2020-12-22T16:10:16Z
dspace.orderedauthorsChitnis, R; Kaelbling, LP; Lozano-Perez, Ten_US
dspace.date.submission2020-12-22T16:10:20Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record