MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards Scalable Threshold Cryptosystems

Author(s)
Tomescu, Alin; Chen, Robert; Zheng, Yiming; Abraham, Ittai; Pinkas, Benny; Gueta, Guy Golan; Devadas, Srinivas; ... Show more Show less
Thumbnail
DownloadAccepted version (1.157Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The resurging interest in Byzantine fault tolerant systems will demand more scalable threshold cryptosystems. Unfortunately, current systems scale poorly, requiring time quadratic in the number of participants. In this paper, we present techniques that help scale threshold signature schemes (TSS), verifiable secret sharing (VSS) and distributed key generation (DKG) protocols to hundreds of thousands of participants and beyond. First, we use efficient algorithms for evaluating polynomials at multiple points to speed up computing Lagrange coefficients when aggregating threshold signatures. As a result, we can aggregate a 130,000 out of 260,000 BLS threshold signature in just 6 seconds (down from 30 minutes). Second, we show how "authenticating"such multipoint evaluations can speed up proving polynomial evaluations, a key step in communication-efficient VSS and DKG protocols. As a result, we reduce the asymptotic (and concrete) computational complexity of VSS and DKG protocols from quadratic time to quasilinear time, at a small increase in communication complexity. For example, using our DKG protocol, we can securely generate a key for the BLS scheme above in 2.3 hours (down from 8 days). Our techniques improve performance for thresholds as small as 255 and generalize to any Lagrange-based threshold scheme, not just threshold signatures. Our work has certain limitations: we require a trusted setup, we focus on synchronous VSS and DKG protocols and we do not address the worst-case complaint overhead in DKGs. Nonetheless, we hope it will spark new interest in designing large-scale distributed systems.
Date issued
2020-07
URI
https://hdl.handle.net/1721.1/129845
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Journal
2020 IEEE Symposium on Security and Privacy
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Tomescu, Alin et al. "Towards Scalable Threshold Cryptosystems." 2020 IEEE Symposium on Security and Privacy, May 2020, San Francisco, California, Institute of Electrical and Electronics Engineers, July 2020. © 2020 IEEE
Version: Author's final manuscript
ISBN
9781728134970

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.