Show simple item record

dc.contributor.authorTomescu, Alin
dc.contributor.authorChen, Robert
dc.contributor.authorZheng, Yiming
dc.contributor.authorAbraham, Ittai
dc.contributor.authorPinkas, Benny
dc.contributor.authorGueta, Guy Golan
dc.contributor.authorDevadas, Srinivas
dc.date.accessioned2021-02-19T20:16:13Z
dc.date.available2021-02-19T20:16:13Z
dc.date.issued2020-07
dc.date.submitted2020-05
dc.identifier.isbn9781728134970
dc.identifier.urihttps://hdl.handle.net/1721.1/129845
dc.description.abstractThe resurging interest in Byzantine fault tolerant systems will demand more scalable threshold cryptosystems. Unfortunately, current systems scale poorly, requiring time quadratic in the number of participants. In this paper, we present techniques that help scale threshold signature schemes (TSS), verifiable secret sharing (VSS) and distributed key generation (DKG) protocols to hundreds of thousands of participants and beyond. First, we use efficient algorithms for evaluating polynomials at multiple points to speed up computing Lagrange coefficients when aggregating threshold signatures. As a result, we can aggregate a 130,000 out of 260,000 BLS threshold signature in just 6 seconds (down from 30 minutes). Second, we show how "authenticating"such multipoint evaluations can speed up proving polynomial evaluations, a key step in communication-efficient VSS and DKG protocols. As a result, we reduce the asymptotic (and concrete) computational complexity of VSS and DKG protocols from quadratic time to quasilinear time, at a small increase in communication complexity. For example, using our DKG protocol, we can securely generate a key for the BLS scheme above in 2.3 hours (down from 8 days). Our techniques improve performance for thresholds as small as 255 and generalize to any Lagrange-based threshold scheme, not just threshold signatures. Our work has certain limitations: we require a trusted setup, we focus on synchronous VSS and DKG protocols and we do not address the worst-case complaint overhead in DKGs. Nonetheless, we hope it will spark new interest in designing large-scale distributed systems.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/sp40000.2020.00059en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleTowards Scalable Threshold Cryptosystemsen_US
dc.typeArticleen_US
dc.identifier.citationTomescu, Alin et al. "Towards Scalable Threshold Cryptosystems." 2020 IEEE Symposium on Security and Privacy, May 2020, San Francisco, California, Institute of Electrical and Electronics Engineers, July 2020. © 2020 IEEEen_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.relation.journal2020 IEEE Symposium on Security and Privacyen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2020-12-10T17:44:30Z
dspace.orderedauthorsTomescu, A; Chen, R; Zheng, Y; Abraham, I; Pinkas, B; Gueta, GG; Devadas, Sen_US
dspace.date.submission2020-12-10T17:44:34Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record