MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Macroscopic Ionic Flow in a Superionic Conductor Na+ β-Alumina Driven by Single-Cycle Terahertz Pulses

Author(s)
Minami, Yasuo; Ofori-Okai, Benjamin Kwasi; Sivarajah, Prasahnt; Katayama, Ikufumi; Takeda, Jun; Nelson, Keith Adam; Suemoto, Tohru; ... Show more Show less
Thumbnail
DownloadPublished version (787.8Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Ionic motion significantly contributes to conductivity in devices such as memory, switches, and rechargeable batteries. In our work, we experimentally demonstrate that intense terahertz electric-field transients can be used to manipulate ions in a superionic conductor, namely Na+ β-alumina. The cations trapped in the local potential minima are accelerated using single-cycle terahertz pulses, thereby inducing a macroscopic current flow on a subpicosecond timescale. Our results clearly show that single-cycle terahertz pulses can be used to significantly modulate the nature of superionic conductors and could possibly serve as a basic tool for application in future electronic devices.
Date issued
2020-04
URI
https://hdl.handle.net/1721.1/130084
Department
Massachusetts Institute of Technology. Department of Chemistry
Journal
Physical Review Letters
Publisher
American Physical Society (APS)
Citation
Minami, Yasuo et al. "Macroscopic Ionic Flow in a Superionic Conductor Na+ β-Alumina Driven by Single-Cycle Terahertz Pulses." Physical Review Letters 124, 14 (April 2020): 147401 © 2020 American Physical Society
Version: Final published version
ISSN
0031-9007
1079-7114

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.