dc.contributor.author | Minami, Yasuo | |
dc.contributor.author | Ofori-Okai, Benjamin Kwasi | |
dc.contributor.author | Sivarajah, Prasahnt | |
dc.contributor.author | Katayama, Ikufumi | |
dc.contributor.author | Takeda, Jun | |
dc.contributor.author | Nelson, Keith Adam | |
dc.contributor.author | Suemoto, Tohru | |
dc.date.accessioned | 2021-03-04T16:45:49Z | |
dc.date.available | 2021-03-04T16:45:49Z | |
dc.date.issued | 2020-04 | |
dc.date.submitted | 2020-01 | |
dc.identifier.issn | 0031-9007 | |
dc.identifier.issn | 1079-7114 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/130084 | |
dc.description.abstract | Ionic motion significantly contributes to conductivity in devices such as memory, switches, and rechargeable batteries. In our work, we experimentally demonstrate that intense terahertz electric-field transients can be used to manipulate ions in a superionic conductor, namely Na+ β-alumina. The cations trapped in the local potential minima are accelerated using single-cycle terahertz pulses, thereby inducing a macroscopic current flow on a subpicosecond timescale. Our results clearly show that single-cycle terahertz pulses can be used to significantly modulate the nature of superionic conductors and could possibly serve as a basic tool for application in future electronic devices. | en_US |
dc.description.sponsorship | NSF (Grant CHE- 1665383) | en_US |
dc.language.iso | en | |
dc.publisher | American Physical Society (APS) | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1103/physrevlett.124.147401 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | APS | en_US |
dc.title | Macroscopic Ionic Flow in a Superionic Conductor Na+ β-Alumina Driven by Single-Cycle Terahertz Pulses | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Minami, Yasuo et al. "Macroscopic Ionic Flow in a Superionic Conductor Na+ β-Alumina Driven by Single-Cycle Terahertz Pulses." Physical Review Letters 124, 14 (April 2020): 147401 © 2020 American Physical Society | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Chemistry | en_US |
dc.relation.journal | Physical Review Letters | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2020-09-22T16:11:48Z | |
dspace.date.submission | 2020-09-22T16:11:50Z | |
mit.journal.volume | 124 | en_US |
mit.journal.issue | 14 | en_US |
mit.license | PUBLISHER_POLICY | |
mit.metadata.status | Complete | |