MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using Dataflow to Optimize Energy Efficiency of Deep Neural Network Accelerators

Author(s)
Chen, Yu-Hsin; Emer, Joel S; Sze, Vivienne
Thumbnail
Download_2017__Micro_Top_Picks__Eyeriss__Article_.pdf (280.9Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
The authors demonstrate the key role dataflows play in the optimization of energy efficiency for deep neural network (DNN) accelerators. By introducing a systematic approach to analyze the problem and a new dataflow, called Row-Stationary, which is up to 2.5 times more energy efficient than existing dataflows in processing a state-of-the-art DNN, this work provides guidelines for future DNN accelerator designs.
Date issued
2017-06
URI
https://hdl.handle.net/1721.1/130106
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Microsystems Technology Laboratories
Journal
IEEE Micro
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Chen, Yu-Hsin et al. "Using Dataflow to Optimize Energy Efficiency of Deep Neural Network Accelerators." IEEE Micro 37, 3 (June 2017): 12 - 21. © 2017 IEEE
Version: Author's final manuscript
ISSN
0272-1732

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.