Show simple item record

dc.contributor.authorChen, Yu-Hsin
dc.contributor.authorEmer, Joel S
dc.contributor.authorSze, Vivienne
dc.date.accessioned2021-03-08T22:07:31Z
dc.date.available2021-03-08T22:07:31Z
dc.date.issued2017-06
dc.identifier.issn0272-1732
dc.identifier.urihttps://hdl.handle.net/1721.1/130106
dc.description.abstractThe authors demonstrate the key role dataflows play in the optimization of energy efficiency for deep neural network (DNN) accelerators. By introducing a systematic approach to analyze the problem and a new dataflow, called Row-Stationary, which is up to 2.5 times more energy efficient than existing dataflows in processing a state-of-the-art DNN, this work provides guidelines for future DNN accelerator designs.en_US
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/mm.2017.54en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Sze via Phoebe Ayersen_US
dc.titleUsing Dataflow to Optimize Energy Efficiency of Deep Neural Network Acceleratorsen_US
dc.typeArticleen_US
dc.identifier.citationChen, Yu-Hsin et al. "Using Dataflow to Optimize Energy Efficiency of Deep Neural Network Accelerators." IEEE Micro 37, 3 (June 2017): 12 - 21. © 2017 IEEEen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Microsystems Technology Laboratoriesen_US
dc.relation.journalIEEE Microen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.date.submission2021-03-05T15:04:35Z
mit.journal.volume37en_US
mit.journal.issue3en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record