MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Strong adhesion of wet conducting polymers on diverse substrates

Author(s)
Inoue, Akihisa; Yuk, Hyunwoo; Lu, Baoyang; Zhao, Xuanhe
Thumbnail
DownloadPublished version (12.75Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution NonCommercial License 4.0 https://creativecommons.org/licenses/by-nc/4.0/
Metadata
Show full item record
Abstract
Conducting polymers such as poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), polypyrrole (PPy), and polyaniline (PAni) have attracted great attention as promising electrodes that interface with biological organisms. However, weak and unstable adhesion of conducting polymers to substrates and devices in wet physiological environment has greatly limited their utility and reliability. Here, we report a general yet simple method to achieve strong adhesion of various conducting polymers on diverse insulating and conductive substrates in wet physiological environment. The method is based on introducing a hydrophilic polymer adhesive layer with a thickness of a few nanometers, which forms strong adhesion with the substrate and an interpenetrating polymer network with the conducting polymer. The method is compatible with various fabrication approaches for conducting polymers without compromising their electrical or mechanical properties. We further demonstrate adhesion of wet conducting polymers on representative bioelectronic devices with high adhesion strength, conductivity, and mechanical and electrochemical stability. Copyright ©2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).
Date issued
2020-03
URI
https://hdl.handle.net/1721.1/130138
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering; Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Science Advances
Publisher
American Association for the Advancement of Science (AAAS)
Citation
Inoue, Akihisa et al., "Strong adhesion of wet conducting polymers on diverse substrates." Science Advances 6, 12 (March 2020): eaay5394 ©2020 Authors
Version: Final published version
ISSN
2375-2548

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.