MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Scalable holistic linear regression

Author(s)
Bertsimas, Dimitris J; Li, Michael Lingzhi
Thumbnail
DownloadAccepted version (144.8Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
We propose a new scalable algorithm for holistic linear regression building on Bertsimas & King (2016). Specifically, we develop new theory to model significance and multicollinearity as lazy constraints rather than checking the conditions iteratively. The resulting algorithm scales with the number of samples n in the 10,000s, compared to the low 100s in the previous framework. Computational results on real and synthetic datasets show it greatly improves from previous algorithms in accuracy, false detection rate, computational time and scalability.
Date issued
2020-05
URI
https://hdl.handle.net/1721.1/130253
Department
Sloan School of Management; Massachusetts Institute of Technology. Operations Research Center
Journal
Operations Research Letters
Publisher
Elsevier BV
Citation
Bertsimasa, Dimitris and Michael Lingzhi Li. “Scalable holistic linear regression.” Operations Research Letters, 48, 3 (May 2020): 203-208 © 2020 The Author(s)
Version: Author's final manuscript
ISSN
0167-6377

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.