Show simple item record

dc.contributor.authorBertsimas, Dimitris J
dc.contributor.authorLi, Michael Lingzhi
dc.date.accessioned2021-03-29T16:15:10Z
dc.date.available2021-03-29T16:15:10Z
dc.date.issued2020-05
dc.date.submitted2020-03
dc.identifier.issn0167-6377
dc.identifier.urihttps://hdl.handle.net/1721.1/130253
dc.description.abstractWe propose a new scalable algorithm for holistic linear regression building on Bertsimas & King (2016). Specifically, we develop new theory to model significance and multicollinearity as lazy constraints rather than checking the conditions iteratively. The resulting algorithm scales with the number of samples n in the 10,000s, compared to the low 100s in the previous framework. Computational results on real and synthetic datasets show it greatly improves from previous algorithms in accuracy, false detection rate, computational time and scalability.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionof10.1016/J.ORL.2020.02.008en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcearXiven_US
dc.titleScalable holistic linear regressionen_US
dc.typeArticleen_US
dc.identifier.citationBertsimasa, Dimitris and Michael Lingzhi Li. “Scalable holistic linear regression.” Operations Research Letters, 48, 3 (May 2020): 203-208 © 2020 The Author(s)en_US
dc.contributor.departmentSloan School of Managementen_US
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Centeren_US
dc.relation.journalOperations Research Lettersen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-02-05T18:09:30Z
dspace.orderedauthorsBertsimas, D; Li, MLen_US
dspace.date.submission2021-02-05T18:09:32Z
mit.journal.volume48en_US
mit.journal.issue3en_US
mit.licensePUBLISHER_CC
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record