Show simple item record

dc.contributor.authorWeber, Ethan
dc.contributor.authorMarzo, Nuria
dc.contributor.authorPapadopoulos, Dim P
dc.contributor.authorBiswas, Aritro
dc.contributor.authorLapedriza Garcia, Agata
dc.contributor.authorOfli, Ferda
dc.contributor.authorImran, Muhammad
dc.contributor.authorTorralba, Antonio
dc.date.accessioned2021-04-02T15:18:38Z
dc.date.available2021-04-02T15:18:38Z
dc.date.issued2020-11
dc.identifier.isbn9783030585280
dc.identifier.isbn9783030585297
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.urihttps://hdl.handle.net/1721.1/130352
dc.descriptionPart of the Lecture Notes in Computer Science book series (LNCS, volume 12364)en_US
dc.description.abstractResponding to natural disasters, such as earthquakes, floods, and wildfires, is a laborious task performed by on-the-ground emergency responders and analysts. Social media has emerged as a low-latency data source to quickly understand disaster situations. While most studies on social media are limited to text, images offer more information for understanding disaster and incident scenes. However, no large-scale image datasets for incident detection exists. In this work, we present the Incidents Dataset, which contains 446,684 images annotated by humans that cover 43 incidents across a variety of scenes. We employ a baseline classification model that mitigates false-positive errors and we perform image filtering experiments on millions of social media images from Flickr and Twitter. Through these experiments, we show how the Incidents Dataset can be used to detect images with incidents in the wild. Code, data, and models are available online at http://incidentsdataset.csail.mit.edu.en_US
dc.language.isoen
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-030-58529-7_20en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleDetecting Natural Disasters, Damage, and Incidents in the Wilden_US
dc.typeBooken_US
dc.identifier.citationWeber, Ethan et al. "Detecting Natural Disasters, Damage, and Incidents in the Wild." ECCV: European Conference on Computer Vision, Lecture Notes in Computer Science, 12364, Springer International Publishing, 2020, 331-350. © 2020 Springer Natureen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalLecture Notes in Computer Scienceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-01-28T14:47:39Z
dspace.orderedauthorsWeber, E; Marzo, N; Papadopoulos, DP; Biswas, A; Lapedriza, A; Ofli, F; Imran, M; Torralba, Aen_US
dspace.date.submission2021-01-28T14:47:52Z
mit.journal.volume12364en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record