MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exploring the landscape of spatial robustness

Author(s)
Engstrom, Logan G.; Tran, Brandon; Tsipras, Dimitris; Schmidt, Ludwig; Madry, Aleksander
Thumbnail
DownloadPublished version (1.830Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Copyright 2019 by the author(s). The study of adversarial robustness has so far largely focused on perturbations bound in lvnorms. However, state-of-the-art models turn out to be also vulnerable to other, more natural classes of perturbations such as translations and rotations. In this work, we thoroughly investigate the vulnerability of neural network-based classifiers to rotations and translations. While data augmentation offers relatively small robustness, we use ideas from robust optimization and test-time input aggregation to significantly improve robustness. Finally we find that, in contrast to the ip-norm case, first-order methods cannot reliably find worst-case perturbations. This highlights spatial robustness as a fundamentally different setting requiring additional study.
Date issued
2019-06
URI
https://hdl.handle.net/1721.1/130391
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Journal
Proceedings of the 36th International Conference on Machine Learning
Publisher
MLResearch Press
Citation
Engstrom, Logan et al. "Exploring the landscape of spatial robustness." Proceedings of the 36th International Conference on Machine Learning, June 2019, Long Beach, California, MLResearch Press, June 2019. © 2019 The Authors
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Facebook Instagram YouTube RSS

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.