Show simple item record

dc.contributor.authorEngstrom, Logan G.
dc.contributor.authorTran, Brandon
dc.contributor.authorTsipras, Dimitris
dc.contributor.authorSchmidt, Ludwig
dc.contributor.authorMadry, Aleksander
dc.date.accessioned2021-04-06T15:52:40Z
dc.date.available2021-04-06T15:52:40Z
dc.date.issued2019-06
dc.identifier.urihttps://hdl.handle.net/1721.1/130391
dc.description.abstractCopyright 2019 by the author(s). The study of adversarial robustness has so far largely focused on perturbations bound in lvnorms. However, state-of-the-art models turn out to be also vulnerable to other, more natural classes of perturbations such as translations and rotations. In this work, we thoroughly investigate the vulnerability of neural network-based classifiers to rotations and translations. While data augmentation offers relatively small robustness, we use ideas from robust optimization and test-time input aggregation to significantly improve robustness. Finally we find that, in contrast to the ip-norm case, first-order methods cannot reliably find worst-case perturbations. This highlights spatial robustness as a fundamentally different setting requiring additional study.en_US
dc.description.sponsorshipNSF (Grants CCF-1553428, CNS-1413920, CCF-1553428 and CNS-1815221)en_US
dc.language.isoen
dc.publisherMLResearch Pressen_US
dc.relation.isversionofhttp://proceedings.mlr.press/v97/engstrom19a.htmlen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProceedings of Machine Learning Researchen_US
dc.titleExploring the landscape of spatial robustnessen_US
dc.typeArticleen_US
dc.identifier.citationEngstrom, Logan et al. "Exploring the landscape of spatial robustness." Proceedings of the 36th International Conference on Machine Learning, June 2019, Long Beach, California, MLResearch Press, June 2019. © 2019 The Authorsen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.relation.journalProceedings of the 36th International Conference on Machine Learningen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-02-05T18:20:48Z
dspace.orderedauthorsEngstrom, L; Tran, B; Tsipras, D; Schmidt, L; Madry, Aen_US
dspace.date.submission2021-02-05T18:20:51Z
mit.journal.volume2019en_US
mit.licensePUBLISHER_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record