Show simple item record

dc.contributor.authorWu, Yannan Nellie
dc.contributor.authorSze, Vivienne
dc.contributor.authorEmer, Joel S.
dc.date.accessioned2021-04-08T14:53:15Z
dc.date.available2021-04-08T14:53:15Z
dc.date.issued2020-10
dc.date.submitted2020-08
dc.identifier.isbn9781728147987
dc.identifier.urihttps://hdl.handle.net/1721.1/130413
dc.description.abstractProcessing-in-memory (PIM) deep neural network (DNN) accelerators, which aim to improve energy/area efficiency of DNN processing by integrating computation into data storage, have gained popularity in recent years. Therefore, it is attractive to have a generally applicable framework that is able to quickly provide insights into the various trade-offs involved in PIM accelerator designs. We present an architecture-level design estimation framework for PIM accelerators that allows easy representations of the designs with provided architecture templates and component design templates, performs analytical runtime simulations, and produces technology-dependent area and energy estimations. We show that the framework can be easily used to evaluate state of the art PIM accelerator designs; it achieves 95% accurate total energy estimations and reproduces exact area breakdowns of the components in the design. Related open-source code is available at http://accelergy.mit.edu/.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/ispass48437.2020.00024en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleAn Architecture-Level Energy and Area Estimator for Processing-In-Memory Accelerator Designsen_US
dc.typeArticleen_US
dc.identifier.citationWu, Yannan Nellie et al. "An Architecture-Level Energy and Area Estimator for Processing-In-Memory Accelerator Designs." 2020 IEEE International Symposium on Performance Analysis of Systems and Software. August, 2020, Boston, MA, Institute of Electrical and Electronics Engineers, October 2020. © 2020 IEEEen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.departmentMassachusetts Institute of Technology. Microsystems Technology Laboratoriesen_US
dc.relation.journal2020 IEEE International Symposium on Performance Analysis of Systems and Softwareen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2021-04-07T14:55:40Z
dspace.orderedauthorsWu, YN; Sze, V; Emer, JSen_US
dspace.date.submission2021-04-07T14:55:48Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record