MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Localized In-Situ Density Measurement in Low Earth Orbit via Drag Torque Estimation

Author(s)
Fitzgerald, Riley McCrea; Cahoy, Kerri
Thumbnail
DownloadAccepted version (1.828Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Orbital forecasting is an essential part of precision satellite operations. The largest contributor to orbital propagation error in low orbits is atmospheric drag, which varies widely due to altitude, latitude, and solar activity. Accurate in-situ measurements would enable improved orbital forecasting, but conventional methods for density measurement require precision accelerometers, tracking systems, or processing on the ground. This work introduces the novel Satellite Producing Aerodynamic Torque to Understand LEO Atmosphere (SPATULA) concept, and provides supporting preliminary simulations of 1) the density recovery capability of a SPATULA satellite, and 2) the efficacy of estimating a global density map via a SPATULA constellation. Results suggest that a SPATULA CubeSat could provide measurement capability on par with current methods in both error and bandwidth using commercially available sensors. This measurement is enabled by considering drag torque instead of drag force; measuring in this domain eliminates many sources of perturbation, and leverages the large body of preexisting attitude sensors for small satellites to achieve a density measurement with root-mean-square error of 1 × 10⁻¹³ kg/m³ and bandwidth of 1 min⁻¹. The high accuracy and low expected cost of this method would enable a constellation to estimate a high-order spherical harmonic global density map in real time.
Date issued
2019-07
URI
https://hdl.handle.net/1721.1/130568
Department
Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Journal
Journal of Spacecraft and Rockets
Publisher
American Institute of Aeronautics and Astronautics (AIAA)
Citation
Fitzgerald, Riley M. and Kerry L. Cahoy. "Localized In-Situ Density Measurement in Low Earth Orbit via Drag Torque Estimation." Journal of Spacecraft and Rockets 56, 5 (September 2019): 1564-1579. © 2019 American Institute of Aeronautics and Astronautics, Inc
Version: Author's final manuscript
ISSN
0022-4650
1533-6794

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.