Show simple item record

dc.contributor.authorFitzgerald, Riley McCrea
dc.contributor.authorCahoy, Kerri
dc.date.accessioned2021-05-11T15:14:32Z
dc.date.available2021-05-11T15:14:32Z
dc.date.issued2019-07
dc.date.submitted2019-03
dc.identifier.issn0022-4650
dc.identifier.issn1533-6794
dc.identifier.urihttps://hdl.handle.net/1721.1/130568
dc.description.abstractOrbital forecasting is an essential part of precision satellite operations. The largest contributor to orbital propagation error in low orbits is atmospheric drag, which varies widely due to altitude, latitude, and solar activity. Accurate in-situ measurements would enable improved orbital forecasting, but conventional methods for density measurement require precision accelerometers, tracking systems, or processing on the ground. This work introduces the novel Satellite Producing Aerodynamic Torque to Understand LEO Atmosphere (SPATULA) concept, and provides supporting preliminary simulations of 1) the density recovery capability of a SPATULA satellite, and 2) the efficacy of estimating a global density map via a SPATULA constellation. Results suggest that a SPATULA CubeSat could provide measurement capability on par with current methods in both error and bandwidth using commercially available sensors. This measurement is enabled by considering drag torque instead of drag force; measuring in this domain eliminates many sources of perturbation, and leverages the large body of preexisting attitude sensors for small satellites to achieve a density measurement with root-mean-square error of 1 × 10⁻¹³ kg/m³ and bandwidth of 1 min⁻¹. The high accuracy and low expected cost of this method would enable a constellation to estimate a high-order spherical harmonic global density map in real time.en_US
dc.language.isoen
dc.publisherAmerican Institute of Aeronautics and Astronautics (AIAA)en_US
dc.relation.isversionofhttp://dx.doi.org/10.2514/1.a34338en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceProf. Cahoy via Barbara Williamsen_US
dc.titleLocalized In-Situ Density Measurement in Low Earth Orbit via Drag Torque Estimationen_US
dc.typeArticleen_US
dc.identifier.citationFitzgerald, Riley M. and Kerry L. Cahoy. "Localized In-Situ Density Measurement in Low Earth Orbit via Drag Torque Estimation." Journal of Spacecraft and Rockets 56, 5 (September 2019): 1564-1579. © 2019 American Institute of Aeronautics and Astronautics, Incen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronauticsen_US
dc.relation.journalJournal of Spacecraft and Rocketsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2021-05-07T15:36:56Z
dspace.orderedauthorsFitzgerald, RM; Cahoy, KLen_US
dspace.date.submission2021-05-07T15:36:57Z
mit.journal.volume56en_US
mit.journal.issue5en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record